
Hyperparameter Tuning 
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Parameters vs hyperparameters



Let's start simple: Model parameters in a linear model

● Parameters are being fit (i.e. found) during training. 
● They are the result of model fitting or training. 
● In a linear model, we want to find the coefficients.



Model parameters vs hyperparameters in a linear model 

● Remember: model parameters are being fit (i.e. found) during training; they 
are the result of model fitting or training.

● Hyperparameters are being set before training. 
● They specify HOW the training is supposed to happen.



Why tune hyperparameters?

● Fantasy football players ~ 
Hyperparameters 

● Football players' positions ~ 
Hyperparameter values 

● Finding the best combination 
of players and positions ~ 
Finding the best combination 
of hyperparameters



Hyperparameters

● Express high-level concepts, such as statistical assumptions 
○ E.g.: regularization

● Are fixed before training or are hard to learn from data
○ E.g.: neural net architecture

● Affect objective, test time performance, computational cost 
○ E.g.: # iterations or epochs



Challenges in Tuning

● Curse of dimensionality 
● Non-convex optimization
● Computational cost
● Unintuitive hyperparameters

○ hyperparameters such as exploration 
percentage and batch size are more 
concrete, while others such as discounting 
factor and learning rate are a little less 
intuitive.



A Practical Definition of Tuning

Parameters: configs which your ML library learns from data

Hyperparameters: configs which your ML library does not learn from data

ML Model

Hyperparameter 
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Tuning methods



Overview of tuning methods

•Manual search

•Random search

•Grid search

•Bayesian algorithms

•Population-based algorithms



Manual Search

Select hyperparameter settings to try based on human intuition.

2 hyperparameters:

● [0,....,5]
● {A,B,....,F}

Expert knowledge tells us to try:

(2,C), (2,D), (2,E), (3,C), (3,D), (3,E)
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Random Search

 We manually set a range of bounds of 
the possible parameters and the algorithm 
makes a search over them for the number 
of iterations we set.



Grid Search

● Set parameter ranges manually for 
algorithm exploration.

● Exhaustive Search Technique:
○ Implement a grid search for a thorough 

exploration of specified parameter ranges.
● Brute-Force Approach:

○ Understand that grid search employs a complete 
brute-force method.

● Execution Time Awareness:
○ Be mindful that this exhaustive process may 

result in longer execution times.



Bayesian optimization

●  Statistical approach for minimizing noisy black-box functions. 

●  Idea: learn a statistical model of the function from hyperparameter values 

to the loss function 
○  Then choose parameters to minimize the loss under this model 

●  Main benefit: choose the hyperparameters to test not at random, but in a way 

that gives the most information about the model. 
○  This lets it learn faster than grid search



Effect of Bayesian Optimization

●  Downside: it’s a pretty heavyweight method 
○  The updates are not as simple-to-implement as grid search 

●  Upside: empirically it has been demonstrated to get better results in fewer 

experiments 
○  Compared with grid search and random search 

●  Pretty widely used method 
○  Lots of research opportunities here



Bayesian Approach

● Make assumption on F(x) we want to maximize: F(x) is a weakly-stationary 
Gaussian process.

● Start with a few points randomly sampled.
● For each new evaluation, update your prior knowledge on F(x) to get a posterior. 
● Using the posterior, decide which point 1= hyperpa ram combination) to try next.

● Using the posterior to decide what to try next: Exploration VS Exploitation 
○  Exploration = sample point where posterior variance is largest, i.e. we know the least on F(x) 
○  Exploitation = sample point where posterior mean is highest, i.e. where we expect F(x) to be max 
○  Usually, some knobs define in the Bayesian optimizer how to tune exploration vs exploitation ...  



Genetic Algorithm

1.  At every iteration consider a population, called generation, consisting of M individuals x,
2. For every individual, evaluate its fitness function F(x) (= model accuracy, in our case)
3. Some individuals are selected to reproduce, with Prob(x is selected) proportional to the 

fitness F(x)
4. A new generation is produced from selected individuals: for child = 1 ... M, choose 2 parents

a. child's genotype (= components of x) is generated by a random crossover of parents' genotype
b. child's genotype is randomly modified by a mutation



Open source tools for tuning


